11 research outputs found

    A Primer on Causality in Data Science

    Get PDF
    Many questions in Data Science are fundamentally causal in that our objective is to learn the effect of some exposure, randomized or not, on an outcome interest. Even studies that are seemingly non-causal, such as those with the goal of prediction or prevalence estimation, have causal elements, including differential censoring or measurement. As a result, we, as Data Scientists, need to consider the underlying causal mechanisms that gave rise to the data, rather than simply the pattern or association observed in those data. In this work, we review the 'Causal Roadmap' of Petersen and van der Laan (2014) to provide an introduction to some key concepts in causal inference. Similar to other causal frameworks, the steps of the Roadmap include clearly stating the scientific question, defining of the causal model, translating the scientific question into a causal parameter, assessing the assumptions needed to express the causal parameter as a statistical estimand, implementation of statistical estimators including parametric and semi-parametric methods, and interpretation of our findings. We believe that using such a framework in Data Science will help to ensure that our statistical analyses are guided by the scientific question driving our research, while avoiding over-interpreting our results. We focus on the effect of an exposure occurring at a single time point and highlight the use of targeted maximum likelihood estimation (TMLE) with Super Learner.Comment: 26 pages (with references); 4 figure

    DNA methylation profiles reveal sex-specific associations between gestational exposure to ambient air pollution and placenta cell-type composition in the PRISM cohort study

    No full text
    Abstract Background Gestational exposure to ambient air pollution has been associated with adverse health outcomes for mothers and newborns. The placenta is a central regulator of the in utero environment that orchestrates development and postnatal life via fetal programming. Ambient air pollution contaminants can reach the placenta and have been shown to alter bulk placental tissue DNA methylation patterns. Yet the effect of air pollution on placental cell-type composition has not been examined. We aimed to investigate whether the exposure to ambient air pollution during gestation is associated with placental cell types inferred from DNA methylation profiles. Methods We leveraged data from 226 mother–infant pairs in the Programming of Intergenerational Stress Mechanisms (PRISM) longitudinal cohort in the Northeastern US. Daily concentrations of fine particulate matter (PM2.5) at 1 km spatial resolution were estimated from a spatiotemporal model developed with satellite data and linked to womens’ addresses during pregnancy and infants’ date of birth. The proportions of six cell types [syncytiotrophoblasts, trophoblasts, stromal, endothelial, Hofbauer and nucleated red blood cells (nRBCs)] were derived from placental tissue 450K DNA methylation array. We applied compositional regression to examine overall changes in placenta cell-type composition related to PM2.5 average by pregnancy trimester. We also investigated the association between PM2.5 and individual cell types using beta regression. All analyses were performed in the overall sample and stratified by infant sex adjusted for covariates. Results In male infants, first trimester (T1) PM2.5 was associated with changes in placental cell composition (p = 0.03), driven by a decrease [per one PM2.5 interquartile range (IQR)] of 0.037 in the syncytiotrophoblasts proportion (95% confidence interval (CI) [− 0.066, − 0.012]), accompanied by an increase in trophoblasts of 0.033 (95% CI: [0.009, 0.064]). In females, second and third trimester PM2.5 were associated with overall changes in placental cell-type composition (T2: p = 0.040; T3: p = 0.049), with a decrease in the nRBC proportion. Individual cell-type analysis with beta regression showed similar results with an additional association found for third trimester PM2.5 and stromal cells in females (decrease of 0.054, p = 0.024). Conclusion Gestational exposure to air pollution was associated with placenta cell composition. Further research is needed to corroborate these findings and evaluate their role in PM2.5-related impact in the placenta and consequent fetal programming
    corecore